Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Sulfide solid-state electrolytes (SSEs) are promising candidates to realize all solid-state batteries (ASSBs) due to their superior ionic conductivity and excellent ductility. However, their hypersensitivity to moisture requires processing environments that are not compatible with today’s lithium-ion battery manufacturing infrastructure. Herein, we present a reversible surface modification strategy that enables the processability of sulfide SSEs (e. g., Li6PS5Cl) under humid ambient air. We demonstrate that a long chain alkyl thiol, 1-undecanethiol, is chemically compatible with the electrolyte with negligible impact on its ion conductivity. Importantly, the thiol modification extends the amount of time that the sulfide SSE can be exposed to air with 33% relative humidity (33% RH) with limited degradation of its structure while retaining a conductivity of above 1 mS cm-1for up to 2 days, a more than 100-fold improvement in protection time over competing approaches. Experimental and computational results reveal that the thiol group anchors to the SSE surface, while the hydrophobic hydrocarbon tail provides protection by repelling water. The modified Li6PS5Cl SSE maintains its function after exposure to ambient humidity when implemented in a Li0.5In | |LiNi0.8Co0.1Mn0.1O2ASSB. The proposed protection strategy based on surface molecular interactions represents a major step forward towards cost-competitive and energy-efficient sulfide SSE manufacturing for ASSB applications.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Abstract All‐solid‐state batteries are emerging as potential successors in energy storage technologies due to their increased safety, stemming from replacing organic liquid electrolytes in conventional Li‐ion batteries with less flammable solid‐state electrolytes. However, all‐solid‐state batteries require precise control over cycling pressure to maintain effective interfacial contacts between materials. Traditional uniaxial cell holders, often used in battery research, face challenges in accommodating electrode volume changes, providing uniform pressure distribution, and maintaining consistent pressure over time. This study introduces isostatic pouch cell holders utilizing air as pressurizing media to achieve uniform and accurately regulated cycling pressure. LiNi0.8Co0.1Mn0.1O2| Li6PS5Cl | Si pouch cells are fabricated and tested under 1 to 5 MPa pressures, revealing improved electrochemical performance with higher cycling pressures, with 2 MPa as the minimum for optimal operation. A bilayer pouch cell with a theoretical capacity of 100 mAh, cycled with an isostatic pouch cell holder, demonstrated a first‐cycle Coulombic efficiency of 76.9% and a discharge capacity of 173.6 mAh g−1(88.1 mAh), maintaining 83.6% capacity after 100 cycles. These findings underscore the effectiveness of isostatic pouch cell holders in enhancing the performance and practical application of all‐solid‐state batteries.more » « less
- 
            Abstract The dry process is a promising fabrication method for all‐solid‐state batteries (ASSBs) to eliminate energy‐intense drying and solvent recovery steps and to prevent degradation of solid‐state electrolytes (SSEs) in the wet process. While previous studies have utilized the dry process to enable thin SSE films, systematic studies on their fabrication, physical and electrochemical properties, and electrochemical performance are unprecedented. Here, different fabrication parameters are studied to understand polytetrafluoroethylene (PTFE) binder fibrillation and its impact on the physio‐electrochemical properties of SSE films, as well as the cycling stability of ASSBs resulting from such SSEs. A counter‐balancing relation between the physio‐electrochemical properties and cycling stability is observed, which is due to the propagating behavior of PTFE reduction (both chemically and electrochemically) through the fibrillation network, resulting in cell failure from current leakage and ion blockage. By controlling PTFE fibrillation, a bilayer configuration of SSE film to enable physio‐electrochemically durable SSE film for both good cycling stability and charge storage capability of ASSBs is demonstrated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
